The relationship between shape of the skull and bite force in finches.
نویسندگان
چکیده
In finches husking time is non-linearly related to the ratio of seed hardness to maximal bite force. Fringillids produce larger bite force and husk relatively hard seeds faster than estrildids of similar size. This is at least partly explained by their relatively larger jaw muscle mass and a difference in husking technique. However, the effect of differences in skull geometry on bite force is unclear. In this study differences in skull morphology that may contribute to the difference in bite force between fringillids and estrildids are analyzed. The shape of the skull was described by the 3D coordinates of a set of landmarks and, after eliminating size, the effect of differences in the shape of the skull on bite force was determined using a static force model. EMG recordings of jaw muscles during seed cracking were used to validate assumptions about the muscle activation patterns used for the static bite force model. The analysis shows that most of the variation in skull geometry is related to differences in size. Although the shape of the skull is highly convergent between fringillids and estrildids, the shape of the skull differs significantly between the two groups. A principal component analysis of the landmark coordinates shows several patterns of allometric shape changes, one of which is expressed more strongly in estrildids than in fringillids. Three characters dominate the effect of shape changes on bite force. Bite force increases with a more caudal position of the quadrate, a more downward inclined beak and a relatively short jugal and palatine. A more downward inclined beak is typically found in estrildids. The height of the upper bill and a number of other changes in skull shape have little effect on bite force. An estimate of the relative contributions of jaw muscle size and skull geometry to the difference in bite force between fringillids and estrildids suggests that the contribution of muscle size is much larger than the contribution of skull geometry.
منابع مشابه
Maximum occlusal force relationship with head and facial pattern in dental students of Shahed university
Background and Aims: The vertical growth pattern of the face depends on several factors. One of these factors can be the muscle strength of the jaw. Maximum occlusal force (MOF) can be considered as an index to measure the function of the muscles of the masticatory system. Despite the various studies, the relationship between the facial pattern and muscle function is still controversial. Accord...
متن کاملSeed husking time and maximal bite force in finches.
Many studies on the efficiency of feeding in finches concentrate on husking time in relation to average seed size and bird size. Large species are capable of eating larger seeds and are able to husk large seeds faster than smaller species. It is generally assumed that husking time is related to bite force. However, there are very few studies that investigate the relationship between husking tim...
متن کاملImplications of predatory specialization for cranial form and function in canids
The shape of the cranium varies widely among members of the order Carnivora, but the factors that drive the evolution of differences in shape remain unclear. Selection for increased bite force, bite speed or skull strength may all affect cranial morphology. We investigated the relationship between cranial form and function in the trophically diverse dog family, Canidae, using linear morphometri...
متن کاملEvolution of bite force in Darwin's finches: a key role for head width.
Studies of Darwin's finches of the Galapagos Islands have provided pivotal insights into the interplay of ecological variation, natural selection, and morphological evolution. Here we document, across nine Darwin's finch species, correlations between morphological variation and bite force capacity. We find that bite force correlates strongly with beak depth and width but only weakly or not at a...
متن کاملFunctional basis for sexual differences in bite force in the lizard Anolis carolinensis
In many species of lizards, males attain greater body size and have larger heads than female lizards of the same size. Often, the dimorphism in head size is paralleled by a dimorphism in bite force. However, the underlying functional morphological basis for the dimorphism in bite force remains unclear. Here, we test whether males are larger, and have larger heads and bite forces than females fo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of experimental biology
دوره 211 Pt 10 شماره
صفحات -
تاریخ انتشار 2008